Help Wanted!

Individuals and Organizations that can Learn from Experience

The geographical instinct.

G.V.T. Matthews BIRD NAVIGATION

Second Edition

CAMBRIDGE UNIVERSITY PRESS

Intelligence:

Preserving, sharing and re-assembling observations and applying lessons learned to new or projected situations. Planning and policy professionals imagine and describe change scenarios

- Most scenarios involve more than one sort of change.
- Compare Alternative Futures
- Develop authoritative recommendations.

Useful policy recommendations

Describe change scenarios concisely
Indicate an educated understanding

How do you know what you know?

Effective Communication

 Create useful ideas in the mind of your experts and the general public.

Nothing happens without communication, credibility, collaboration

Data can be Useful

- But data aren't magic
- But data are confusing
- There are predictable ways that people are confused by data

Credible analysis can be recognized by the way that it leads the reader through the interpretation of data, and the predictable issues.

Maps can be Useful

But maps are confusing
There are predictable ways that people are confused by maps

be a critical customer.

The Information Age: New Expectations for Scholarship, Planning and Administration

De-Mystify Data and Models

		The World	Purpose / Questions	- Research / Scholarship			
hetraction		Observations • Purposes, Methods • Referencing systems	Conceptual Model: • Entities / Phenomena • Relationships	Background: • Prior work • Design / Discussion			
A	r Model -	Database Schema: • Entities / Phenomena • Attributes / Organization	Operations: • Transformations • Associations	Investigation: • Portrayal • Logic / Experiments			
Understanding	Critique	Fitness of Data • Adequate for purpose? • Assessment of error: Commission / Omission	 Fitness of Operations: As representation of Processes and Relationships Assessment of error 	Vew Maps / New Data Utility of New Information • Concise / Confusing • Credible / Unfounded • Useful / Not Useful Degree of Confidence			
		Information Needs Critical Entities Attributes / Precision Paul Cote 2008	Simulation Challenges • Processes • Relationships Discussion / Maps / Da	Useful Knowledge • About models • About the world ata Model / Documentation			

Every policy and planning enterprise requires people who can lead projects that:

- Describe change situations concisely
- Create maps that communicate
- Use data to support recommendations
- Organize data for re-use.

Always begin with a pilot feasibility study!

Information Lifespan: School Projects

Typical information lifecycle in planning and research

Cultivating Social Intelligence

Compile Data /	Author / Modify	Visualize / Study	Evaluate:
Create Schema:	Regulation	Programmatic	Alternatives:
Discover, Obtain,	Evo	eriment Capacity	Performance
Transform, Organize	Land Use		& Impacts
Ideas & Information	Terrain	Conerence with	Communicate:
	Torrain	Context	Narrative,
Information	Circulation	Streetscape, Shadows	Graphics,
Infraction	Buildings	View Corridors	Video
infrastructure	Danango	Refine	Collaborate /
Information & Ideas	Vegetation	Demographics	Share:
About Places & Processes		participate,	Resources,
(In-House or Internet)		Instigate	Understanding,
		mana	Procedures

Paul Cote, 2008

Information Development :

New information emerges from coherent organization.

Sharing and Re-Use:

Resources and tools exchanged with collaborators and successors

Enterprises that learn from experience

Old Trends in Geography and Information Systems

- Systematic observation
- Standardized referencing systems
- Open, Interoperable encoding
- Sharing and integration of independent observations

AS	CII	Co	de:	Cha	irac	ter	to	Binar
			•	0100		-	0110	1101
0	0011	0000	-	0100	1111	m	0110	1101
1	0011	0001	р	0101	0000	n	0110	1110
2	0011	0010	Q	0101	0001	0	0110	1111
3	0011	0011	R	0101	0010	P	0111	0000
4	0011	0100	S	0101	0011	. q	0111	0001
5	0011	0101	т	0101	0100	r	0111	0010
6	0011	0110	υ	0101	0101	s	0111	0011
7	0011	0111	v	0101	0110	t	0111	0100
8	0011	1000	W	0101	0111	u	0111	0101
9	0011	1001	х	0101	1000	v	0111	0110
A	0100	0001	Y	0101	1001	w	0111	0111
в	0100	0010	z	0101	1010	x	0111	1000
С	0100	0011	a	0110	0001	У	0111	1001
D	0100	0100	b	0110	0010	z	0111	1010

Geography: First GIS: ca 1961

Watch Video: Data for Decision on You Tube

Roger Tomlinson and the Canada Land Inventory

Harvard Lab for Computer Graphics and Spatial Analysis Pushed Geography into the Mainframe Era

ALL LAND USES BELOW 100 FEE WITHIN THE FLOOD PLAIN

MEHL

A:A1: 'D	IP								
Vorksheet	Range	Сору	Nove Fi	ile Pr	int Gra	upli Data	Systen	Quit	
Global D	losert l	lelete	Column	Erase	Titles	Window	Status	Page	Hide
				-	-	-			

Ĥ.	Ĥ	8	C	D	- E		F	6	
1	ENP	enp_hane	DEPTHO	J06	YEARS		SALARY	BOHU5	
2	-1177	Azibad	4980	Sales		2	48096	19698	
з –	B1964	Bina inn	6989	Sales		Э	45096	19698	
4	49378	Burns	6 0 88	Пgr		4	75998	25698	
5	59796	Caeser	7986	Пдг		3	65098	25698	
6	49692	Curly	3080	Пдг		5	65088	20000	
1	34791	Baharrett	7080	Sales		2	45088	19698	
B	84984	Daniels	1969	President	t	8	158698	169698	
9	59037	Denpsey	3885	Sales		Э	48596	19698	
10	51515	Bonovan	3989	Sales		2	38696	5698	
11	48338	Fields	4980	Пдг		5	78088	25888	
12 -	91574	Fiklore	1989	Ad∎in		8	35088		
13	64596	Fine	5989	∏gr		Э	75096	25698	
14 -	13729	Green	1085	∏gr		5	98596	25698	
15	55957	Kermann	4986	Sales		4	58698	19698	
16 -	31619	Hodgedon	5080	Sales		2	48088	19698	
17 -	1773	Hovard	2080	Пдг		3	88086	25000	
18	2165	Hugh	1969	Rd∎in		5	38696		
19	23087	Johnson	1085	¥₽.		1	198596	59698	
28	7166	Laflare	2085	Sales		2	35596	5688	
DATA	-PK3								

Local Problems Occurring Globally

Individual and Societal Health

Food Insecurity

Population Growth

> Climate Change

> > **Urbanization**

War and Displacement Ecological Devastation

Disappearing Beauty

Diminishing Natural Resources

New Modes of Scholarship, Planning, Design and Administration

Old Trends in Geography and Information Systems

- Systematic observation
- Standardized referencing systems
- Open, Interoperable encoding
- Sharing and integration of independent observations

Additional recent trends in Geography and Information Systems

- Engineered Information Infrastructure
- Web-Based Data and Metadata
- Automatic, Intentional Models

*Same as the old trends, only exploded and multiplied!

Adaptive Systems of Models that Communicate

• <u>General Transit Feed</u> (formerly Google Transit Feed)

Adaptive Information Systems

- U.S. Geological Survey
- Hydrographic Model
- <u>Real-Time Monitoring</u>

Daily Streamflow Conditions

Tuesday, April 21, 2015 11:00ET

Real-Time Atmosperic Models

• NOAA Real Time Forecast

Adaptive Information Systems

- Real Time Traffic
- Memory of traffic behavior associated with land use change HOUSTOR REMETAR.
 State Houston Transportation and Emergency Management Center

Agricultural Monitoring

- NASA Mission to Earth
- CropScape
- <u>Real-Time Monitoring</u>

Data that knows What It Represents.

Tim Berners-Lee - Semantic Web - World Wide Web Consortium

Standards: the Heart of societal information sharing

Communities Stakeholders Experts

Open Geospatial Consortium

Some cool projects

- <u>History PIN</u>: Linking historical images with geography
- <u>Map Junction</u>: Web Map Services for georeferenced historical imagery.
- When will HistoryPIN incorporate historical map services?

My Projects:

- Boston and Cambridge 3d Models More info...
- <u>City of Cambridge Historical Commission Archive</u> <u>Project</u>.

Cheap, Free Tools and Infrastructure

Your server in the cloud \$40 / Mont

Industrial Strength tools. FREE

Leaflet 🖊 🕑 mapbox CARTO

Javascript frameworks for web 'maplications

Interactive data visualization

Mobile Applications

Help Wanted!

Information Systems in Planning and Policy